Teses e Dissertações (BDTD USP - IFSC)
URI permanente para esta coleçãohttp://143.107.180.6:4000/handle/RIIFSC/9
Navegar
4 resultados
Resultados da Pesquisa
Item Estrutura cristalográfica da N-acetilglicosamina 6-fosfato desacetilase de Escherichia coli(2014-08-21) Ferreira, Frederico MoraesO objetivo do presente trabalho é a elucidação da estrutura cristalográfica da proteína N-acetilglicosamina 6-fosfato desacetilase (desacetilase) da bactéria Escherichia coli. A desacetilase é um tetrãmero de subunidades idênticas de 382 aminoácidos e massa molecular de 41 kDa. Esta é uma enzima da via de catabolismo de açúcares aminados e cataliza a conversão do N-acetilglicosamina 6-fosfato em glicosamina 6-fosfato. Nesta via a bactéria dedica cinco genes organizados em um regulon, o nagE-nagBACD, com propósitos de obtenção de energia e de reciclagem de componentes de parede celular. A reciclagem de componentes de parede celular é a via de maior atividade metabólica de E. coli, na qual aproximadamente 40% dos peptidoglicanos de parede celular são quebrados a cada geração, sendo o N-acetilglicosamina (GlcNAc) reutilizado para a síntese de novo de peptidoglicanos e lipopolissacarídeos de membrana externa. O GlcNAc exerce funções multi-regulatórias na via de catabolismo de aminoaçúcares e a desacetilase é o maior fator controlador da sua concentração intracelular. Foi demonstrado que a desacetilase é a enzima mais importante da via e que sem ela a E. coli não é capaz de reciclar o GlcNAc. A desacetilase é encontrada em outros organismos desempenhando funções igualmente importantes, estando relacionada à captura e o armazenamento de carboidratos em hepatócitos e células sinusiais de fígado de camundongo, à morfogênese e à diminuição da patogenicidade e da adesão da Candida albicans a tecidos endoteliais, chegando também a ser estudada para desenvolvimento de inibidores contra o parasita da malária o Plasmodzum falciparum. Neste trabalho foram descritos os procedimentos desde a subclonagem do gene codificador da desacetilase de E. coli até a interpretação da sua estrutura quaternária, incluindo a expressão, a purificação, a cristalização, a produção de cristas derivados de átomos pesados, a estimativa de fases e a construção e refinamento do modelo cristalográfico. A estrutura foi resolvida por espalhamento anômalo de iodo de baixa resolução (2,9 angstron), em comprimento de onda único, sendo refinada a resolução de 2,0 angstron. Na unidade assimétrica encontram-se dois monômeros relacionados por um eixo de ordem 2 não cristalográfico aproximadamente a 15° da direção do eixo cristalográfico c. A simetria do cristal aplicada à unidade assimétrica leva a formação de um tetrâmero cuja área da superfície de tetramerização é de 5.343 angstron2, correspondente a 18,4% da área do dímero. A área de superfície de acessibilidade da interface dimerização é de 1.053 angstron2, correspondente a 6,8 % da área do monômero. O monômero da desacetilase é constituído por dois domínios: o beta, um pequeno sanduíche beta; e o alfa, um pseudo barril (beta/alfa)8 comum aos membros da super família da Amidohidrolases. O domínio-beta é constituído por duas folhas beta mistas e uma hélice alfa. O domínio- alfa é constituído por 11 hélices alfa e por três folhas beta, uma paralela e as outras duas anti paralelas. No domínio- beta, oito das onze hélices alfa formam ligações cruzadas com as oito fitas da folha beta paralela para formar o \"barril\" onde encontra-se o sítio ativo. No sitio ativo foi observada a presença de um íon fosfato. Os resíduos do sítio ativo que participam da ligação ao fosfato são Gln59, Glu131, His195, His216 e Asp273, dos quais pelo menos uma histidina e um ácido aspártico têm se conservado em membros da super família das AmidohidrolasesItem Estrutura cristalográfica da bothropstoxina-I, uma miotoxina k49 tipo fosfolipase A2(2014-02-21) Silva, Maria Teresa daA bothropstoxina I (BthTX-I) é uma miotoxina isolada do veneno da serpente brasileira Bothrops jararacussu, a qual é um membro da família das fosfolipases A2, mas não apresentam atividade catalítica devido á substituição D49K. A proteína for fornecida pelo Prof. Dr. J. R. Giglio e Profa. Dra. A. C. O. Cintra do Departamento de Bioquímica da Faculdade de Medicina de Ribeirão Preto e usada em experimentos de cristalização, os quais foram realizados usando a técnica de difusão de vapor \"hanging drop\" a 18°C. A BthTX-I cristalizou em tampão HEPES 0.1 M, pH variando entre 7.0 e 7.6. O agente precipitante foi o (NH4)SO4 em concentrações que variaram de 57% a 62% de saturação. A coleta de dados foi inicialmente feita utilizando o difratômetro automático R-AXIS IIC da Rigaku Co. do Laboratório de Cristalografia de proteínas do IFSC-USP. Subseqüentemente foi realizado uma segunda coleta de dados no SERC Daresbury Laboratory na Inglaterra, usando radiação síncrotron. A BthTX-I cristalizou no grupo espacial P3121 com os seguintes parâmetros de rede: a=b=57.58 ANGSTROM, c= 131.27 ANGSTROM, ALPHA=BETA=90° e GAMA=120°. O processamento de dados foi realizado com o programa MOSFLM, conduzindo a um Rmerge=6.3% e completeza de 99.6% a uma resolução de 2.1 ANGSTROM. A estrutura foi resolvida por Substituição Molecular, utilizando o programa AMoRe, onde foi utilizada como modelo inicial a estrutura da miotoxina da serpente Agkistrodon piscivorus piscivorus e refinada usando o programa XPLOR que conduziu a um fator Rfinal= 18.7% e Rfree=27.4%. A unidade assimétrica contém dois monômeros, os quais podem ser escolhidos de forma a apresentar interações similares aquelas descritas para a miotoxina II da Bothrops asper. A superfície de interface é entretanto, surpreendentemente pequena quando comparada com outras estruturas diméricas e a complementaridade é menor do que o valor esperado. Um modelo teórico para a ligação do fosfolipídeo na BthTX-I sugere que nenhuma interação direta entre a ligação ester sn-2 e a K49 deve ser esperada de forma a explicar a falta de atividade catalítica. Foi visto também, que é possível se reproduzir um dendrograma baseado na seqüência de aminoácidos, pelo uso de estruturas tridimensionais para os membros da família das PLA2Item Cristalografia estrutural aplicada a complexos organometálicos(2013-11-25) Bonfadini, Marcos RobertoNo Capítulo 1, os fundamentos da cristalografia de raios X estão sucintamente descritos. No Capítulo 2, seis estruturas de pequenas moléculas contendo átomos pesados em sua constituição foram determinadas. As quais são resumidas a seguir: 1)[Ru2Cl5(CO)(PPh3)3], Mr = 1194,21, cristaliza-se no sistema monoclínico, grupo espacial P21/c com a =14,618(4)Å, b=18,043(7)Å, c=20,31(3)Å β=99,81(5)° V=5277(8) Z=4; Dcalç =1,503g/cm-3; λ(MoKα) = 0,71073Å μ = 0,954 mm-1; F(000) = 2404; R=0,538 para 9281 reflexões independentes e 487 parâmetros refinados. Os átomos de Ru estão ligados em ponte através de três ânions Cl. Um átomo de Ru é coordenado a dois outros átomos de Cl e a um ligante PPh3, o outro átomo de Ru está coordenado a dois ligantes PPh3 e a uma molécula de CO. 2)[RuCl3(dppb)H2O], Mr = 651,88, cristaliza-se no sistema ortorrômbico, grupo espacial Pbca; com a=14,932(1) Å, b=18,133 (3)Å, c=20,59(3)Å V=5576,0(1) Z=8; Dcalc =1,553g/cm-3; λ(MoKα) = 0,71073Å μ = 0,985 mm-1; F(000)=2648; R=0,0461 para 4892 reflexões independentes e 316 parâmetros refinados. O complexo é hexacoordenado. Os átomos P encontram-se em posição cis, um em relação ao outro, formando um complexo próximo de uma estrutura octaédrica. Esta estrutura apresentou interação intermolecular Cl...H. A distância entre o H de uma molécula e o Cl é de 2,48(2)Å. 3) FeC19H1919N19S19], Mr=377,28, cristaliza-se no sistema monoclínico, grupo espacial P21/n; com a=11,715(2)Å, b=7,830(2)Å, c=18,728(3)Å β=91,570(1)° V=1717,1(6) Z=4; Dcalc =1,459g/cm-3; λ(MoKα) = 0,71073Å μ = 1,004 mm-1; F(000)=784; R=0,0453 para 3018 reflexões independentes e 218 parâmetros refinados. O complexo é formado por um átomo de ferro decacoordenado em uma extremidade e na outra existe um anel aromático, indicando que os radicais genéricos mostrados na Seção (2.5) são R\'=C\'H IND. 3\', X=S1 e R\"=fenil. 4)[pyH][RuCl4(dmso)(py)].(CH2Cl2)1/2, Mr=562,11 cristaliza-se no sistema triclínico, grupo espacial P1; com a= 7,7608(1)Å, b=85451(1)Å, c=15,095(5)Å α=88,27(2)º β=79,33(2)º γ,=88,77(1)º V=983,2(4) Z=2; Dcalc=1,899gcm-3; λ(CuKα)=1,54184 Å μ=15,001 mm-1; F(000)=556; R=0,0886 para 2909 reflexões independentes e 204 parâmetros refinados. O Ru está octaedricamente coordenado a quatro átomos Cl coplanares, a um N do anel de uma piridina e ao dmso, em posição trans entre si. Um outro grupo piridina protonado, que forma o cátion da estrutura, completa a estrutura. 5)[RuCl2(CO)2(AsPh3)2, Mr =840,43, cristaliza-se no sistema monoclínico, grupo espacial P21/n; com a=710,520(4)Å, b=25,823(5)Å, c=12,780(2)Å β=100,7401(1)° V=3411,0(1) Z=4; Dcalc =1,637gcm-3; λ(CuKα)=1,54184 Å μ=7,576 mm-1; F(000)=1672; R=0,0739 para 4284 reflexões independentes e 406 parâmetros refinados. O átomo de Ru está ligado a dois átomos de Cl e a duas moléculas CO, que formam aproximadamente um plano entre si. Os CO\'s estão em posição trans em relação aos Cl\'s. O átomo de Ru também apresenta coordenação com duas PPh3. 6)[Ru2ClBr4(CO)(AsPh3).CH2Cl2)<, Mr=154,88 cristaliza-se no sistema monoclínico, grupo espacial P21/c; com a=14,766(2)Å, b=18,519(2)Å, c=20,730(4)Å β=100,085(1)° V=5581,2(1) Dcalc =1,839gcm-3; λ(CuKα)=1,54184 Å μ=10,947mm-1; F (000)=3004; R=0,0955 para 5738 reflexões independentes e 493 parâmetros refinados. O complexo é formado por dois átomos de Ru em ponte através de três ânions Br. Um átomo de Ru é também coordenado a um átomo Br, a um Cl e a um ligante trifenilfosfina. O outro átomo de Ru está ligado a duas trifenilarsinas e a uma molécula de monóxido de carbono. No capítulo 3, apresentam-se as conclusões e planos futurosItem Caracterização estrutural de cerâmicas ferroelétricas Pb1-xLaxTiO3 e Pb1-xBaxZr0,65Ti0,35O3 por espectroscopia de absorção de raios-x e difração de raios-x(2008-05-07) Neves, Person PereiraNeste trabalho, as técnicas de difração de raios X (DRX) e espectroscopia de absorção de raios X (XAS) foram utilizadas respectivamente na caracterização da ordem estrutural de longo e curto alcance no sistema cerâmico Pb1-xLaxTiO3 (PLTX) com x variando entre 0 e 30% de lantânio e no sistema cerâmico Pb1-xBaxZr0,65Ti0,35O3 (PBZTX) com x variando entre 0 e 40% de bário. O principal objetivo deste trabalho foi correlacionar as informações estruturais em ambos os sistemas com a mudança de comportamento ferroelétrico normal para um ferrolétrico relaxor que ocorre a medida que o átomo de chumbo é substituído pelos átomos lantânio (PLTX) e bário (PBZTX). Os resultados de XAS mostram em todas as amostras caracterizadas como ferroelétricos normais e em temperaturas abaixo e acima da transição de fase (Tc) que o átomo de titânio está sempre deslocado de sua posição centro-simétrica dentro do octaedro TiO6. O mesmo resultado foi observado nas amostras relaxoras acima e abaixo da temperatura de máximo da permissividade dielétrica relativa (Tm). Os resultados de XAS mostram que tanto para ambos os sistemas que o grau de desordem a nível local não depende da amostra ser um material ferroelétrico normal ou relaxor e de sua estrutura cristalina a longa distância ser de alta ou de baixa simetria. Por outro lado, os resultados de DRX mostram para as amostras ferroelétricas normais uma estrutura tetragonal abaixo de Tc e uma estrutura cúbica em temperaturas acima de Tc. Nas amostras que apresentam propriedades relaxoras (PLT30 e PBZT40), em temperaturas acima do máximo da permissividade dielétrica relativa (Tm), os resultados de DRX mostram para ambos os sistemas uma estrutura cúbica. Para a amostra relaxora do sistema PBZTX (PBZT40), o resultado de DRX mostra que a estrutura é cúbica em temperaturas bem acima e bem abaixo de Tm. Entretanto, para a amostra relaxora do sistema PLTX (PLT30), é observada uma transição de fase cúbica (acima de Tm) para tetragonal (abaixo de Tm). Uma relação entre os resultados estruturais obtidos por ambas as técnicas e as propriedades ferroelétricas exibidas por este conjunto de amostras é apresentada. O uso simultâneo das técnicas de DRX e XAS mostrou ser complementar levando à obtenção de resultados estruturais ainda não presentes na literatura especializada.