Teses e Dissertações (BDTD USP - IFSC)
URI permanente para esta coleçãohttp://143.107.180.6:4000/handle/RIIFSC/9
Navegar
2 resultados
Resultados da Pesquisa
Item Diagnóstico de leucemia linfóide auxiliado por computador(2014-12-05) Ushizima, Daniela MayumiO presente trabalho de doutorado visa estudar o diagnóstico de leucemias por meio de processamento das imagens de microscópio óptico de transmissão, em colaboração com médicos hematologistas do HC-FMRP-USP e sob supervisão do Prof. Dr. Marco Zago. Como nem todas as leucemias podem ser diagnosticadas por meio de parâmetros visuais, apenas os casos de leucemia linfóide serão considerados, uma vez que esses são casos onde as células podem ser classificadas visualmente com precisão. A análise citológica é feita por especialistas humanos, cotidianamente em casos de contagem do número de leucócitos e se limitam à avaliação de um número reduzido de amostras pois é uma tarefa repetitiva, minuciosa e especializada. Com a automação desse processo, há possibilidade de maior número de análises de imagens, com geração de informações estatísticas a respeito das células presentes em amostras de sangue. O reconhecimento automático da célula envolve três etapas básicas: a segmentação da imagem, a extração de características e a classificação. A técnica de reconhecimento de padrões adotada para segmentação das imagens de esfregaços de sangue utiliza aprendizagem supervisionada por cor no espaço RGB, gerando imagens binárias contendo as diferentes regiões de interesse: núcleo, citoplasma, fundo e hemácia. O usuário pode treinar o classificador para uma imagem de esfregaço de sangue periférico, segmentar, filtrar e processar várias medidas das ROIs, particularmente do núcleo e citoplasma, considerando parâmetros de forma, textura e cor. A contribuição desse projeto está na elaboração de programas de interface amigável tanto para reconhecimento de padrões quanto para seleção de característica e mineração de dados. O programa de reconhecimento de padrões é baseado em casos de leucócitos normais, de leucemia linfóide crônica, prolinfocítica e tricoleucemia. Para desenvolvimento do programa de reconhecimento de padrões foi necessária uma grande base de dados, que hoje conta com aproximadamente 1.439 imagens, onde cerca de 1.058 são de leucócitos normais e cerca de 381 de leucêmicosItem Técnicas de mineração de dados para análise de imagens(2009-01-19) Consularo, Luís AugustoImagens codificadas por matrizes de intensidade são tipicamente representadas por grande quantidade de dados. Embora existam inúmeras abordagens para análise de imagens, o conhecimento sobre problemas específicos é raramente considerado. Este trabalho trata sobre problemas de análises de imagens cujas soluções dependem do conhecimento sobre os dados envolvidos na aplicação específica. Para isso, utiliza técnicas de mineração de dados para modelar as respostas humanas obtidas de experimentos psicofísicos. Dois problemas de análise de imagens são apresentados: (1) a análise de formas e (2) a análise pictórica. No primeiro problema (1), formas de neurônios da retina (neurônios ganglionares de gato) são segmentadas e seus contornos submetidos a uma calibração dos parâmetros de curvatura considerando a segmentação manual de um especialista. Outros descritores, tais como esqueletos multi-escalas são explorados para eventual uso e avaliação da abordagem. No segundo problema (2), a análise pictórica de imagens de home-pages serve para avaliar critérios estéticos a partir de medidas de complexidade, contraste e textura. O sistema generaliza as respostas por um experimento psicofísico realizados com humanos. Os resultados objetivos com as duas abordagens revelaram-se promissores, surpreendentes e com ampla aplicabilidade.