Teses e Dissertações (BDTD USP - IFSC)
URI permanente para esta coleçãohttp://143.107.180.6:4000/handle/RIIFSC/9
Navegar
3 resultados
Resultados da Pesquisa
Item Introdução à biocristalografia com o estudo estrutural da quinase dependente de ciclina 2 (CDK2) complexada com inibidores(2014-03-26) Azevedo Junior, Walter Filgueira deO ciclo celular é controlado pela atividade das quinases dependentes de ciclinas (Ciclin-dependent kinases, CDKs). As CDKs são inativas como monômeros, e a sua ativação necessita da ligação às ciclinas, uma família diversa de proteínas cujos os níveis oscilam durante o ciclo celular, e fosforilação pela CAK (CDK-activating kinase) sobre um resíduo de treonina específico. As CDKs são capazes de fosforilar muitas proteínas que estão envolvidas nos eventos do ciclo celular, incluindo histonas e proteínas supressoras de tumores como pRb. Além da função de regulação positiva das ciclinas e CAK, muitas proteínas inibidoras de CDKs (CDK inhibitors, CKIs) têm sido descobertas, tais como p16, p21 e p28. Visto que, a desregulação das ciclinas e/ou alteração ou ausência de CKIs têm sido associadas com muitos cânceres, há um forte interesse em inibidores químicos de CDKs que possam ter uma função importante na descoberta de novas famílias de agentes anti-tumores. Vistoque, ATP é o autêntico co-fator da CDK2 este pode ser considerado como um \"pseudo-composto líder\" para a descoberta de inibidores de CDK2. Entretanto, há duas preocupações maiores a serem consideradas: composto contendo adenina são ligantes comuns para muitas enzimas nas células, desta forma, qualquer composto altamente carregado como ATP não será absorvido pelas células. Nós descrevemos aqui as estruturas determinadas por difração de raios-X da CDK2 em complexo com dois inibidores diferentes, descloro-flavopiridol (DFP) e Roscovitine. A estrutura do complexo binário CDK2-DFP foi resolvida por substituição molecular e refinada até um Rfactor=20,3% e a estrutura da CDK-2Roscovitine foi refinada até um Rfactor=18%. O descloro-flavopiridol é uma flavona com uma nova estrutura,comparável àquelas de flavonas polihidroxiladas. Estudos prévios mostraram que flavopiridol, um flavonóide, pode inibir cânceres de mama e de pulmão. O Roscovitine é um derivado de adenina e um potente inibidor de CDK2. A comparação das estruturas tridimensionais de CDK2-DFP e CDK2-Roscovitine com a de CDK2-ATP mostraram que o bolsão hidrofóbico de ligação de adenina tem a habilidade surpreendente de acomodar estruturas moleculares diferentes daquelas da ATPItem Modelagem molecular da enzima gliceraldeído-3-fosfato desidrogenase de T. cruzi e análise de potenciais inibidores específicos(2013-11-20) Panepucci, Ezequiel HorácioFoi construído o modelo tridimensional da enzima gliceraldeído-3- fosfato desidrogenase de Trypanosoma cruzi, o causador da doença de Chagas, usando técnicas computacionais de modelagem por homologia. O modelo foi comparado a enzima muscular homóloga de humanos quanto as diferenças no sitio de ligação do cofator NAD+. Sobre o modelo da enzima de T.cruzi foram construidas moléculas anaJogas ao grupo adenosina do cofator NAD+ como tentativa de se obter um inibidor seletivo a enzima do parasita e não efetivo quanto à enzima de humanos. Alguns dos compostos haviam sido ensaiados quanto à afinidade pela enzima análoga de Trypanosoma brucei. Foi escrito um programa de visualização gráfica de modelos moleculares que permite a análise dos parâmetros esteroquímicos com rapidez e simplicidadeItem Planejamento de inibidores da enzima gliceraldeído-3-fosfato desidrogenase de Trypanosoma cruzi: biologia estrutural e química medicinal(2008-06-10) Guido, Rafael Victório CarvalhoA Doença de Chagas, causada pelo parasita Trypanosoma cruzi, atinge cerca de um quarto da população da América Latina. Os fármacos disponíveis para o tratamento desta doença são inapropriados, apresentam baixa eficácia e sérios efeitos colaterais que limitam o seu uso. Esse grave panorama torna urgente a descoberta de novos agentes quimioterápicos para o tratamento seguro e eficaz da doença. A via glicolítica é principal forma de obtenção de energia de tripanosomatídeos. Um alvo molecular atrativo desta via bioquímica que desempenha papel essencial no controle do fluxo glicolítico do Trypanosoma cruzi, a enzima gliceraldeído-3-fosfato desidrogenase (GAPDH), foi selecionada neste trabalho de Tese para estudos em biologia estrutural e química medicinal visando à identificação e planejamento de novos inibidores enzimáticos. Neste contexto, triagens biológicas resultaram na identificação de compostos de origem natural e sintética com atividade inibitória in vitro frente à GAPDH de T. cruzi, ampliando a diversidade química de moduladores seletivos deste alvo. Estudos cinéticos e estruturais demonstraram o comportamento não cooperativo entre os sítios ativos da enzima GAPDH de T. cruzi em relação à interação com o cofator NAD+, fornecendo importantes evidências mecanísticas e estruturais para uma melhor compreensão das bases moleculares envolvidas no processo de reconhecimento molecular. Os estudos das relações quantitativas entre a estrutura e atividade (QSAR 2D e QSAR 3D) resultaram na geração de modelos com elevada consistência estatística interna e externa, além de alto poder preditivo da propriedade-alvo. Além disso, estudos de modelagem molecular e de QSAR 3D revelaram aspectos estruturais relevantes para o planejamento de inibidores seletivos da enzima GAPDH de tripanosomatídeos. Por fim, uma estratégia de triagem virtual baseado na estrutura do receptor foi empregada para a identificação de novos inibidores da GAPDH de T. cruzi, consistindo, entre outros, na aplicação de filtros hierárquicos sucessivos envolvendo restrições farmacofóricas e estudos de docagem molecular que resultaram na seleção de 35 candidatos a inibidores da enzima-alvo. Os trabalhos integrando estudos em química medicinal e biologia estrutural apresentados nessa Tese de Doutorado significam importantes contribuições no desenvolvimento de bases científicas sólidas para o planejamento de novos inibidores potentes e seletivos da enzima GAPDH de T. cruzi, um alvo molecular de alta prioridade em nosso grupo de pesquisa.