Teses e Dissertações (BDTD USP - IFSC)

URI permanente para esta coleçãohttp://143.107.180.6:4000/handle/RIIFSC/9

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Item
    Avalanches e redes complexas no modelo Kinouchi-Copelli
    (2012-10-25) Valencia, Camilo Akimushkin
    A capacidade de um sistema sensorial detectar estímulos eficientemente é tradicionalmente dimensionada pela faixa dinâmica, que é simplesmente uma medida da extensão do intervalo de intensidades de estímulo para as quais a rede é suficientemente sensível. Muitas vezes, sistemas biológicos exibem largas faixas dinâmicas, que abrangem diversas ordens de magnitude. A compreensão desse fenômeno não é trivial, haja vista que todos os neurônios apresentam janelas de sensibilidade muito estreitas. Tentativas de explicação baseadas em argumentos de recrutamento sequencial dos neurônios sensoriais, com efeitos essencialmente aditivos, simplesmente não são realísticas, haja vista que seria preciso que os limiares de ativação das unidades também apresentassem um escalonamento por várias ordens de magnitude, para cobrir a faixa dinâmica empiricamente observada em nível macroscópico. Notavelmente, o modelo Kinouchi-Copelli (KC), que carrega o nome de seus idealizadores, mostrou que aquele comportamento pode ser um efeito coletivo (não aditivo) do conjunto de neurônios sensoriais. O modelo KC é uma rede de unidades excitáveis com dinâmicas estocásticas e acoplados segundo uma topologia de grafo aleatório. Kinouchi e Copelli mostraram que a taxa espontânea de disparo dos neurônios (ou atividade média) sinaliza uma transição de fase fora do equilíbrio do tipo ordem-desordem, e que exatamente no ponto crítico desta transição (em termos de um parâmetro ligado às características estruturais da rede) a sensibilidade a estímulos externos é máxima, ou seja, a faixa dinâmica exibe uma otimização crítica. Neste trabalho, investigamos como o ponto crítico depende da topologia, utilizando os modelos mais comuns das chamadas redes complexas. Além disso, estudamos computacionalmente os padrões de atividade (avalanches neuronais) exibidos pelo modelo, com especial atenção às mudanças qualitativas de comportamento devido às mudanças de topologia. Comentaremos também a relação desses resultados com experimentos recentes de monitoramento de dinâmicas neurais.