Repositório Institucional IFSC

URI permanente desta comunidadehttp://143.107.180.6:4000/handle/RIIFSC/1

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Item
    Construção da representação simplética irredutível para o modelo algébrico de evolução do código genético
    (2015-02-13) Barbosa, Marconi Soares
    A evolução do código genético foi analisada por Hornos & Hornos segundo um modelo algébrico baseado em um processo de quebra de simetria induzido pela cadeia de álgebras de Lie, sp (6) ⊃ sp (4) ⊕ su (2) ⊃ su (2) ⊕ su (2) ⊕ su (2). Inserindo a álgebra sp (6) numa álgebra unitária de maior dimensão e possível estender a analise, bem conhecida para os grupos unitários, a serie simplética. Construímos aqui polinômios em termos de operadores de destruição que constituem uma base para a representação irredutível da álgebra sp (6) na cadeia canônica. A eles associamos os aminoácidos e os códons, seguindo o principio do modelo algébrico para evolução do código genético. Implementamos toda a ação dos operadores em linguagem algébrica Maple, com o recurso de realizar simplificações por meio de um produto escalar. Podemos, realizar ações de qualquer função analítica dos elementos desta álgebra simplética sobre estes vetores de estado alem do Hamiltoniano de Hornos - que consiste de operadores de Casimir com ação conhecida. Verificamos aqui que algumas transições produzidas pelos geradores seguem simetrias de reflexão no diagrama de pesos. Por outro lado encontramos regras de seleção estabelecidas pela simetria simplética e pela cadeia especifica. Discutimos as ações dos geradores do grupo sp (6) baseado num novo assignment que sob certas hipóteses de simetrias se mostrou único