Repositório Institucional IFSC

URI permanente desta comunidadehttp://143.107.180.6:4000/handle/RIIFSC/1

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    Kit didático: interferometria de duplo feixe
    (2017-05-31)
    Sem informação na página
  • Item
    Medida de parametros biomecânicos do olho com laser de baixa coerência.
    (2009-08-07) Oliveira, Antonio Cesar de
    Neste trabalho desenvolvemos um novo método para análise biométrica do olho. Essa análise se compõe de medidas dos parâmetros biomecânicos, ou seja, espessura da córnea, distancia entre a córnea e o cristalino, espessura do cristalino, e distancia entre o cristalino e a retina. Este novo método funciona utilizando o princípio da interferometria com laser de baixa coerência. O conhecimento desses parâmetros e de suma importância para o fornecimento de dados necessários para o implante de lentes intra-oculares, em casos de catarata. Alem disso, eles permitem diagnosticar patologias clinicamente caracterizadas por suas alterações. O instrumento convencionalmente utilizado para essas medidas e o biômetro ultra-sônico. Embora esses biômetros sejam práticos e eficientes, a resolução por análise ultra-sônica esta limitada ao fato do tecido ocular não fornecer ecos satisfatórios em freqüências muito acima de 10 MHz. Uma limitação na resposta de freqüência determina uma subseqüente limitação na precisão de medida, já que esta será tanto maior quanta maior a freqüência. Uma variedade de técnicas diferentes tem sido experimentada nos últimos dez anos visando estabelecer um método mais preciso. Entretanto, várias das alternativas existentes têm sido rejeitadas devido à complexidade operacional e altos custos. A técnica interferométrica, entretanto, reúne alta resolução, simplicidade operacional e baixo custo. Isso pode ser constatado pelos resultados obtidos, os quais revela um enorme potencial aplicativo para futuros trabalhos de pesquisa ou mesmo de diagnose.
  • Imagem de Miniatura
    Item
    Desenvolvimento de sensores quânticos com átomos ultrafrios
    (2015-12-08) Courteille, Philippe Wilhelm
    Esta proposta visa tornar a tecnologia de sensores quânticos uma realidade. À frente da revolução quântica antecipada em aplicações comerciais, a proposta pretende criar um consórcio de pesquisa para lidar com duas vertentes de investigações específicas: (i) Análise e implementação de novas ideias para sensores quânticos baseados em átomos frios interagindo com cavidades ópticas e investigações para a primeira utilização dupla de sensores para metrologia e interferometria gravitacional com novas aplicações possíveis; (ii) demonstração de novas técnicas e estratégias para miniaturização e simplificação de sensores quânticos baseados em átomos aprisionados em nano-potenciais plasmônicos. Os sistemas realizados permitirão estudos fundamentais em novos regimes da eletrodinâmica quântica em cavidades e em ondas evanescentes.
  • Imagem de Miniatura
    Item
    Development of quantum sensors for precision positioning and underground mapping
    (2015-12-08) Courteille, Philippe Wilhelm
    We propose to initiate collaboration between the Instituto de Física de São Carlos of the Universidade de São Paulo and the Midland Ultracold Atom Research Centre (MUARC) of the Universities of Birmingham and Nottingham. The initial work, undertaken over a period of two years, will focus on developing a new type of quantum sensor based on laser-cooled atoms, capable of simultaneously measuring time and elevation, and detecting variations in density hidden below ground. The collaboration exploits the convergence of active research interests at the three institutions, supported by (1) off-site training and work exchange; (2) sharing of world-leading facilities and expertise; and (3) knowledge transfer and educational workshops. Motivation and innovation goals. Atom interferometric sensors and frequency standards based on ultracold atoms (Nobel Prizes in Physics: 1997, 2001, and 2005) have shown unprecedented precision for time-frequency, gravity and magnetic field measurements in laboratories. However, when it comes to applying this technology, there is a bottleneck associated with the size and complexity of existing experiments. We aim to make quantum technology practical, with novel dual-use sensors for time-frequency and gravitational metrologies. This type of sensor has the potential to revolutionize applications in oil and mineral exploration, navigation, climate research, and telecommunications. Our project brings together the complementary strengths and interests of multiple UK and Brazilian partners to develop a world-leading and long-lived collaboration. Expected results: The gravity sensor representing the basis of this project incorporates two unique features: It is the first dual-function sensor and the first to operate in a regime dominated by quantum mechanical interactions between light and matter. This allows self-calibration as well as continuous high-bandwidth measurements of the sensor output, and is expected to open completely new fundamental questions and research opportunities. We will combine the Birmingham and Nottingham capabilities in atom interferometry and precision frequency standards with expertise in atom-ring-cavity systems from the Brazilian partners in order to develop the world's first combined optical clock and gravity sensor.