Repositório Institucional IFSC
URI permanente desta comunidadehttp://143.107.180.6:4000/handle/RIIFSC/1
Navegar
3 resultados
Resultados da Pesquisa
Item Análise multi-escala de formas bidimensionais(2014-11-28) Cesar Junior, Roberto MarcondesEsta tese introduz um conjunto de novos métodos para análise de formas bidimensionais (2D) dentro do contexto da resolução de problemas de visão computacional e analise de formas neurais ou neuromorfometria. Mais especificamente, este trabalho apresenta o desenvolvimento de conceitos e algoritmos para a representação e analise multi-escala de contornos de objetos em imagens digitais. Assim, o contorno dos objetos e representado por um sinal que assume valores complexos e que pode ser subseqüentemente analisado por uma transformada multi-escala. Nesse sentido, os desenvolvimentos apresentados nesta tese valeram-se matematicamente de ferramentas desenvolvidas na área de processamento de sinais e de imagens, bem como em outras áreas da matemática como a geometria diferencial. Técnicas de analise de contornos através da curvatura multi-escala e das transformadas de Gabor e em wavelets são introduzidas, incluindo algoritmos específicos para a detecção de vértices, caracterização de escalas naturais, analise fractal de curvas deterministicamente auto-similares e extração de vetores de características associadas a diferentes aspectos de formas como complexidade e retangularidade. Particularmente em relação aos métodos de analise multi-escala de curvatura, esta tese apresenta um novo esquema de estimação digital de curvatura baseado em propriedades da transformada de Fourier e novas abordagens para a prevenção a contração dos contornos devido a filtragem gaussiana. Esse novo esquema de estimação de curvatura foi testado exaustivamente, incluindo uma avaliação da precisão do método através de uma analise de erro entre valores da curvatura analítica e a estimada baseada em curvas B-splines. O novo esquema apresentou resultados encorajadores em todas as avaliações, corroborando sua eficiência. Em relação a parte especifica de analise de formas neurais, as contribuições desta tese residem em duas áreas. Inicialmente, novas medidas de formas, correspondentes as energias multi-escala, foram introduzidas para a caracterização e classificação automática de neurônios baseada na complexidade das formas; experimentos de classificação estatística de celulas ganglionares (gato) são relatados. Finalmente, descreve-se uma nova técnica para a criação semi-automática de dendrogramas, os quais são estruturas de dados abstratas que descrevem células neurais. Todas as técnicas foram extensivamente testadas em imagens reais e sintéticas e os respectivos resultados, que corroboram a eficiência dos algoritmos, são incluídos ao longo da teseItem Técnicas de mineração de dados para análise de imagens(2009-01-19) Consularo, Luís AugustoImagens codificadas por matrizes de intensidade são tipicamente representadas por grande quantidade de dados. Embora existam inúmeras abordagens para análise de imagens, o conhecimento sobre problemas específicos é raramente considerado. Este trabalho trata sobre problemas de análises de imagens cujas soluções dependem do conhecimento sobre os dados envolvidos na aplicação específica. Para isso, utiliza técnicas de mineração de dados para modelar as respostas humanas obtidas de experimentos psicofísicos. Dois problemas de análise de imagens são apresentados: (1) a análise de formas e (2) a análise pictórica. No primeiro problema (1), formas de neurônios da retina (neurônios ganglionares de gato) são segmentadas e seus contornos submetidos a uma calibração dos parâmetros de curvatura considerando a segmentação manual de um especialista. Outros descritores, tais como esqueletos multi-escalas são explorados para eventual uso e avaliação da abordagem. No segundo problema (2), a análise pictórica de imagens de home-pages serve para avaliar critérios estéticos a partir de medidas de complexidade, contraste e textura. O sistema generaliza as respostas por um experimento psicofísico realizados com humanos. Os resultados objetivos com as duas abordagens revelaram-se promissores, surpreendentes e com ampla aplicabilidade.Item Análise de formas 3D usando wavelets 1D, 2D e 3D(2007-05-02) Pinto, Sílvia Cristina DiasEste trabalho apresenta novos métodos para análise de formas tridimensionais dentro do contexto de visão computacional, destacando-se o uso das transformadas wavelets 1D, 2D e 3D, as quais proporcionam uma análise multi-escala das formas estudadas. As formas analisadas se dividem em três tipos diferentes, dependendo da sua representação matemática: f(t)=(x(t),y(t),z(t)), f(x,y)=z e f(x,y,z)=w. Cada tipo de forma é analisado por um método melhor adaptado. Primeiramente, tais formas passam por uma rotina de pré-processamento e, em seguida, pela caracterização por meio da aplicação das transformadas wavelet 1D, 2D e 3D para as respectivas formas. Esta aplicação nos permite extrair características que sejam invariantes à rotação e translação, levando em consideração alguns conceitos matemáticos da geometria diferencial. Destaca-se também neste trabalho a não obrigatoriedade de parametrização das formas. Os resultados obtidos a partir de formas extraídas de imagens médicas e dados biológicos, que justificam este trabalho, são apresentados.