Repositório Institucional IFSC
URI permanente desta comunidadehttp://143.107.180.6:4000/handle/RIIFSC/1
Navegar
2 resultados
Resultados da Pesquisa
Item Mecanismos de interação molecular de polieletrólitos antimicrobianos em membranas modelo por espectroscopia vibracional não linear(2015-10-13) Rimoli, Caio VazPesquisa em novas moléculas e estratégias antimicrobianas é crucial devido ao aumento de resistência a antibióticos pelos microrganismos. Polímeros antimicrobianos tem várias vantagens quando comparados a outros biocidas pequenos: maiores tempo de vida, potência, especificidade e baixa toxicidade residual. Logo, outras aplicações tecnológicas como recobrimentos, embalagens ou produtos têxteis antimicrobianos poderem ser exploradas. Em particular, derivados hidrossolúveis de quitosana, como os oligômeros de quitosana (OQ), são biopolímeros catiônicos extraídos de fontes renováveis que são candidatos promissores a serem agentes antimicrobianos de amplo espectro (fungos, bactérias gram-positivas e bactérias gram-negativas). Diferentemente da quitosana, que é sobretudo bioativa em pHs ácidos, OQ permanece catiônico – e portanto ativo – em pH fisiológico. Não obstante, o mecanismo exato pelo qual o polímero age nas membranas celulares permanece desconhecido em nível molecular. Este trabalho visa investigar o mecanismo de interação entre os OQ e modelos de membrana biomiméticos (Filmes de Langmuir). Para comparação, outro polieletrólito catiônico sintético com propriedades antibacterianas, o PAH – poli(hidrocloreto de alilamina) – foi investigado. Nós realizamos a Espectroscopia por Geração de Soma de Frequência (SFG) em Filmes de Langmuir de fosfolipídeos em água pura e em subfases contendo antimicrobianos. A Espectroscopia SFG nos permite obter o espectro vibracional de moléculas interfaciais (filme lipídico e moléculas que estão interagindo com ele: água e antimicrobianos) sem nenhuma contribuição de moléculas do interior do volume e é muito sensível às conformações lipídicas da membrana. Um fosfolipídeo zwitteriônico (DPPC) foi usado para modelar membranas tipo-humana, enquanto outro carregado negativamente (DPPG) modelava a tipo-bacteriana. Isotermas em subfases contendo antimicrobianos mostraram que ambos PAH e OQ causam uma pequena expansão das monocamadas de DPPC. Entretanto, para as monocamadas de DPPG ambos os polieletrólitos geraram uma expansão significativa. Entre eles, os OQ causaram um efeito mais drástico. Espectros SFG dos estiramentos CH mostraram que a conformação lipídica permaneceu bem empacotada em todos os casos (ligeiramente menos ordenada com PAH) apesar das expansões da membrana. Isto indica que os OQ foram inseridos formaram ilhas de OQ dentro do filme lipídico. Mudanças na forma de linha dos estiramentos da água interfacial indicaram que a adsorção de PAH em ambos os filmes foram capazes de compensar as cargas negativas, gerando uma inversão de cargas na superfície. Os espectros SFG dos grupos fosfato também indicaram que, em água pura, as cabeças polares de DPPC estão com uma orientação mais ordenada do que no caso do DPPG. Contudo, quando interagindo com os polieletrólitos catiônicos, as cabeças dos DPPGs se ordenam, ficando preferencialmente perpendicular à interface. Experimentos com antimicrobianos injetados na subfase enquanto os filmes de Langmuir já estavam condensados indicaram que os OQ foram capazes de penetrar na monocamada, embora causando uma expansão no filme menor. Esta comparação evidencia que a escolha da metodologia experimental afeta o resultado, mas ambas podem ser complementares, visto que podem representar diferentes fases do ciclo celular das biomembranas. A visão detalhada provida aqui para as interações moleculares desses polieletrólitos com filmes lipídicos podem os elucidar mecanismos de atividade biocida deles e auxiliar no planejamento racional de novos polímeros antimicrobianos.Item Desenvolvimento de nanobiocompósitos contendo nanopartículas de prata para aplicações bactericidas(2010-06-16) Berni Neto, Elias AntonioNeste trabalho de mestrado foram desenvolvidos nanobiocompósitos contendo quitosana (QS) e nanopartículas de prata (AgNPs) para aplicação em matrizes poliméricas com propriedades bactericidas. O trabalho foi conduzido em 4 etapas, sendo: i) a primeira referente ao estudo e escolha do melhor modo de estabilização dos colóides de prata em solução, sendo escolhido o modo de estabilização estérica com a quitosana (QS); ii) a segunda parte está relacionada com um estudo detalhado da interação entre a QS e as nanopartículas de prata (AgNPs) além da otimização da relação QS:AgNPs no nanocompósito para se obter maior ação bactericida; iii) foi também proposta uma rota de síntese na qual não se utiliza-se o Boro Hidreto de Sódio (NaBH4) como redutor, composto altamente reativo, sendo utilizados o citrato de sódio e QS conjuntamente como redutores; iv) inserção do nanocompósito QS:AgNPs em uma matriz de polivinil álcool (PVA). Foram utilizadas as técnicas de espectroscopia UV-vis e FT IR, DLS, Potencial Zeta, MET, DR-X, ensaios microbiológicos de MIC, OD595 e teste de halo de inibição, TGA, DSC e ensaios mecânicos. Concluímos que o uso da QS como agente estabilizante em comparação ao PVA é a mais indicada, devido ao maior número de grupos funcionais interagindo com as nanopartículas de prata. O poder de ação bactericida do nanocompósito QS:AgNPs pode ser aumentado numa certa relação entre ambos, a saber 4:1 em massa. A síntese utilizando citrato de sódio e QS como redutores mostrou a possibilidade da obtenção de nanopartículas de prata pequenas, com tamanho de 2 - 5 nm com estrutura esférica ou maiores. com tamanho de 300 nm, apresentando estruturas dendríticas, dependendo apenas do tempo de reação e concentração de citrato de sódio. A última etapa revelou a possibilidade da inserção do nanocompósito no polímero PVA sem perda significativa das características térmicas e mecânicas do polímero.