Logo do repositório
Comunidades & Coleções
Tudo no DSpace
  • English
  • Español
  • Português do Brasil
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Neves, Evelina Maria de Almeida"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Nenhuma Miniatura Disponível
    Item
    Estratégia atencional para busca visual e reconhecimento invariante de objetos baseada na integração de características bottom-up e top-down
    (2014-03-17) Neves, Evelina Maria de Almeida
    Uma das tarefas básicas dos mecanismos atencionais é decidir qual a localização dentro do campo visual, em que devemos prestar atenção primeiro. Um objeto que contenha características distintas, tais como orientação, forma, cor, tamanho, brilho, textura, etc. diferentes, pode atrair a atenção de uma maneira \"bottom-up\". A informação \"top-down\" baseia-se no conhecimento prévio e tem uma grande influência nas localizações atendidas. Inspirado nos mecanismos da Atenção Visual Humana, embora sem a pretensão de simulá-la, este trabalho prevê o desenvolvimento de uma nova metodologia que integra os dois tipos de informações: \"bottom-up\" e \"top-down\". Características \"bottom-up\" são geradas a partir de Momentos e essas informações são utilizadas em mapas de saliência, enquanto que um conhecimento prévio é utilizado para gerar pistas \"top-down\". Neste trabalho, desenvolveu-se uma metodologia específica para a busca e o reconhecimento visual em cenas com múltiplos objetos, utilizando para isso uma rede \"fuzzy\" contendo três subsistemas \"fuzzy\". Dada uma imagem de entrada, o objetivo consiste em se detectar regiões que possam conter informações mais significativas, a fim de que se possa guiar e restringir processamentos mais complexos. A inclusão de mecanismos de atenção (seleção de uma região de interesse dentro da imagem) é de fundamental importância pois os resultados obtidos pelo método podem ser usados para controlar a aquisição da imagem de uma maneira dinâmica. O modelo proposto está estruturado em três estágios principais: O primeiro estágio consiste em se segmentar os objetos e extrair características globais dos mesmos baseadas principalmente na teoria dos momentos, tais como tamanho, orientação, formato e distância e também média de nível de cinza. Por intermédio da comparação de um objeto com os outros presentes na cena, características \"bottom-up\" de conspicuidade são usadas para guiar a atenção ao objeto mais diferente. Por intermédio do uso da lógica \"fuzzy\" é possível inferir com grande flexibilidade algumas regras de decisão baseadas nos princípios de percepção visual tais como as leis Gestalt. O segundo estágio consiste de um subsistema \"fuzzy top-down\" que combina diferentes características de acordo com a relevância das mesmas em diferentes tarefas. Finalmente, o terceiro estágio consiste de um subsistema \"fuzzy\" que integra as informações obtidas dos subsistemas anteriores e fornece um índice geral de saliência, e indica a provável localização do objeto a ser reconhecido. A nova abordagem foi testada com objetos geométricos levando-se em consideração as características que atraem a atenção dos serem humanos

DSpace software copyright © 2002-2025 LYRASIS

  • Enviar uma sugestão
Logo do repositório COAR Notify