Navegando por Autor "Dahmouche, Monica Santos"
Agora exibindo 1 - 2 de 2
- Resultados por Página
- Opções de Ordenação
Item Aprisionamento simultâneo de sódio-potássio e estudos colisionais(2014-08-21) Dahmouche, Monica SantosNeste trabalho reportamos a produção da primeira armadilha magneto-ótica que confina simultaneamente duas espécies atômicas distintas: Sódio e Potássio. Para podermos realizar este aprisionamento, foi necessário vencer algumas dificuldades técnicas que justificam, inclusive, a escolha dos elementos utilizados. Nossa armadilha também foi utilizada para realizar o primeiro estudo de colisões frias entre átomos de espécies diferentes. Experimentalmente, as informações sobre essas colisões são obtidas através da medida da dinâmica de perdas da armadilha de S6dio em presença e ausência de átomos frios de Potássio. Observamos que o efeito de colisões heteronucleares e dez vezes menor do que as homonucleares. Esta diferença já era esperada devido ao menor alcance dos potenciais de interação entre átomos no caso de espécies distintas. Nossos resultados são comparados a uma teoria semi-clássica simples e se encontram em bom acordo com as previsões. Introduzimos uma nova técnica que consiste em mudar repentinamente a intensidade do laser aprisionador e observar a variação do número de átomos aprisionados. Medimos a taxa de perdas por colisão entre átomos de Potássio frios como função da intensidade do laser aprisionador. Essa técnica nos permite alcançar o regime de baixas intensidades, inclusive abaixo da intensidade de saturação, sem as limitações da técnica tradicional. Aplicamos essa técnica ao aprisionamento simultâneo e medimos a taxa de perdas por colisão do sódio na presença e ausência de potássio. Com essa medida somos capazes de estimar a seção e choque entre sódio e potássio ambos no estado fundamentalItem Desacelaração de césio pela técnica de sintonia Zeeman(2011-06-06) Dahmouche, Monica SantosNeste trabalho pela primeira vez, desaceleramos um feixe de Cs pela Técnica de Sintonia Zeeman. Usamos um laser de diodo contrapropagante ao feixe atômico. Essa técnica se baseia na utilização de um campo magnético de perfil espacial parabólico para compensar o efeito Doppler e manter o átomo ressonante com o laser durante o processo de desaceleração. Conseguimos reduzir a velocidade dos átomos até C 940cm/s. Para medir essa velocidade usamos uma técnica simples, diferente da usual, que utiliza um feixe de prova. Com o nosso magneto, não foi possível desacelerar átomos com velocidade acima de 12000 cm/s. O limite de campo magnético em que tivemos que trabalhar corresponde à campo fraco, para o estado fundamental do Cs. Esse fato acarreta um aumento na probabilidade de ocorrerem transições erradas. Observamos a presença de um intervalo de \"detuning\" útil, fora do qual não conseguimos desacelerar. Esse intervalo também está relacionado com o limite máximo de velocidades para que haja desaceleração. Chegamos a esse intervalo através de simulações feitas para encontrar os parâmetros necessários à desaceleração. Os resultados obtidos experimentalmente estão de acordo com o que foi previsto pela simulação. Paralelamente à desaceleração de CS, preparamos os lasers de diodo e reduzimos sua largura de linha. Entretanto não usamos o laser estreito para a desaceleração. A fim de trabalharmos com espectroscopia de alta resolução reduzimos a largura de linha do laser a semicondutor fazendo um acoplamento da cavidade laser com uma cavidade, Fabry-Pérot, externa. Conseguimos estreitar a largura de linha até 500KHz. Esse resultado nos possibilitará investigar as linhas do Cs, aprisionado em um \"trap\" magnético-óptico, experimento este que já está em andamento em nosso laboratório