Navegando por Autor "Barbosa, Marconi Soares"
Agora exibindo 1 - 2 de 2
- Resultados por Página
- Opções de Ordenação
Item Construção da representação simplética irredutível para o modelo algébrico de evolução do código genético(2015-02-13) Barbosa, Marconi SoaresA evolução do código genético foi analisada por Hornos & Hornos segundo um modelo algébrico baseado em um processo de quebra de simetria induzido pela cadeia de álgebras de Lie, sp (6) ⊃ sp (4) ⊕ su (2) ⊃ su (2) ⊕ su (2) ⊕ su (2). Inserindo a álgebra sp (6) numa álgebra unitária de maior dimensão e possível estender a analise, bem conhecida para os grupos unitários, a serie simplética. Construímos aqui polinômios em termos de operadores de destruição que constituem uma base para a representação irredutível da álgebra sp (6) na cadeia canônica. A eles associamos os aminoácidos e os códons, seguindo o principio do modelo algébrico para evolução do código genético. Implementamos toda a ação dos operadores em linguagem algébrica Maple, com o recurso de realizar simplificações por meio de um produto escalar. Podemos, realizar ações de qualquer função analítica dos elementos desta álgebra simplética sobre estes vetores de estado alem do Hamiltoniano de Hornos - que consiste de operadores de Casimir com ação conhecida. Verificamos aqui que algumas transições produzidas pelos geradores seguem simetrias de reflexão no diagrama de pesos. Por outro lado encontramos regras de seleção estabelecidas pela simetria simplética e pela cadeia especifica. Discutimos as ações dos geradores do grupo sp (6) baseado num novo assignment que sob certas hipóteses de simetrias se mostrou únicoItem "Invariantes diferenciais do grupo simpléctico"(2006-01-31) Barbosa, Marconi SoaresA álgebra simpléctica $sp(2)$ é realizada em termos de operadores bosônicos e sua ação local acontece numa porção de um extit{jet-space} associado com as variáveis independentes. Entretanto as derivadas da variável dependente, que é mantida fixa, se transformam sob a ação dos campos vetoriais prolongados. A existência de um extit{coframe} invariante neste extit{jet-space} nos permite construir operadores diferenciais invariantes que produzem invariantes diferenciais através de sua ação em invariantes de ordem menor. Apresentamos explicitamente neste trabalho invariantes diferenciais de segunda ordem para $sp(2n), n=1,2,3$. Todos invariantes de ordem maior podem ser obtidos mediante diferenciação. Estes invariantes diferenciais assim obtidos constituem uma base funcional explícita para equaç ões diferenciais parciais invariantes pela ação local do grupo simpléctico. Esta nova classe de equações diferenciais parciais com simetria pré-determinada não somente oferece seu cardápio usual de benefícios operacionais relacionados com a simetria carregada, mas restringe o formato que um problema variacional com tal simetria pode apresentar.