Modelos de mecânica estatística exatamente solúveis em duas dimensões

Nenhuma Miniatura disponível
Data
2007-06-29
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo

Neste trabalho nós estudamos alguns sistemas de spins e vértices exatamente solúveis em duas dimensões. A solubilidade exata está ligada ao fato de existirem soluções não triviais das equações de fatorização, o que nos permite obter a energia livre no limite termodinâmico. Introduzimos e resolvemos pelo método de espalhamento inverso, um modelo de dez vértices assimétrico com dois e três estados nas ligações. Obtemos o diagrama de fases e mostramos que o sistema exibe uma transição de fase de primeira ordem. Analisamos um modelo de oito vértices de férmions livres e propomos uma nova relação funcional que nos permite calcular a energia livre por vértice. Mostramos que este sistema de vértices corresponde ao modelo de Ising na rede Union Jack. Apresentamos um método de solução de modelos de spin em redes triangulares a partir da solução do mesmo modelo na rede quadrada. O método se aplica sempre que o modelo de spins envolver interação de primeiros vizinhos e satisfizer a relação triângulo-estrela. Estendemos para a rede triangular, as soluções autoduais de Fateev e Zamolodchikov para a rede quadrada, de modelos de spin com simetria Z(N). Analisamos as conjecturas existentes sobre a criticalidade do modelo de Potts definido na rede de Kagomé. Baseados na simetria e nas degenerescências dessa rede conjecturamos uma expressão para a sua linha crítica.


We study some spin and vertex systems which are exactly solvable in two dimensions. The exact solubility is connected to the existence of non trivial solutions of the factorization equations which allow us to determine the free energy in the thermodynamic limit. We introduce and solve by the inverse scattering method, a ten vertex model with two and three states on the links. We get the phase diagram of the system and show that it exhibits a first order phase transition. Analysing a free fermion eight vertex model, we propose a new functional relation which permit us to get the free energy per vertex. We also show that this system is equivalent to the Ising model in a Union Jack lattice. We present a method to solve spin models on triangular lattices from the known solution of the same model on square lattices. The method applies whenever the model involves first neighbours interactions and satisfies the star triangle relation. We extend to the triangular lattice the self dual solutions of Fateev and Zamolodchikov for Z(N) invariant spin systems. We also analyse the conjectures made before for the critical Potts model on a Kagomé lattice. Based on symmetry and on the collapses of this lattice we conjecture an expression for their critical line.

Descrição
Palavras-chave
Equações de Yang-Baxtor, Modelos exatamente solúveis, Relação triângulo-estrela, Exactly solved models, Star-triangle relation, Yang-Baxter equations, Exactly solved models, Star-triangle relation, Yang-Baxter equations
Citação